Home The Word Brain My Amedeo FAQ Privacy About Flying Publisher   


COVID-19: Daily Top 10 Papers


  Ischemic Heart Disease

  Free Subscription


Articles published in Cardiovasc Res

Retrieve available abstracts of 95 articles:
HTML format



Single Articles


    April 2021
  1. YU J, Li J, Leaver PJ, Arnott C, et al
    Effects of canagliflozin on myocardial infarction: a post hoc analysis of the CANVAS Program and CREDENCE trial.
    Cardiovasc Res. 2021 Apr 7. pii: 6214523. doi: 10.1093.
    PubMed     Abstract available


    March 2021
  2. ZHAO TX, Ur-Rahman MA, Sage AP, Victor S, et al
    Rituximab in Patients with Acute ST-elevation Myocardial Infarction (RITA-MI): an Experimental Medicine Safety Study.
    Cardiovasc Res. 2021 Mar 30. pii: 6203810. doi: 10.1093.
    PubMed     Abstract available


    February 2021
  3. TRINDER M, Zekavat SM, Uddin MM, Pampana A, et al
    Apolipoprotein B is an insufficient explanation for the risk of coronary disease associated with lipoprotein(a).
    Cardiovasc Res. 2021 Feb 24. pii: 6149309. doi: 10.1093.
    PubMed    


    January 2021
  4. KAIER TE, Alaour B, Marber M
    Cardiac troponin and defining myocardial infarction.
    Cardiovasc Res. 2021 Jan 17. pii: 6103159. doi: 10.1093.
    PubMed     Abstract available


  5. FIOLET ATL, Thompson PL, Mosterd A
    Colchicine in coronary disease: another renaissance of an ancient drug.
    Cardiovasc Res. 2021;117:e4-e6.
    PubMed    


  6. MUELLER KAL, Langnau C, Gunter M, Poschel S, et al
    Numbers and phenotype of non-classical CD14dimCD16+ monocytes are predictors of adverse clinical outcome in patients with coronary artery disease and severe SARS-CoV-2 infection.
    Cardiovasc Res. 2021;117:224-239.
    PubMed     Abstract available


    October 2020
  7. WU X, Reboll MR, Korf-Klingebiel M, Wollert KC, et al
    Angiogenesis After Acute Myocardial Infarction.
    Cardiovasc Res. 2020 Oct 16. pii: 5924555. doi: 10.1093.
    PubMed     Abstract available


    September 2020
  8. KESSLER T, Graf T, Hilgendorf I, Rizas K, et al
    Hospital admissions with acute coronary syndromes during the COVID-19 pandemic in German cardiac care units.
    Cardiovasc Res. 2020;116:1800-1801.
    PubMed    


    July 2020
  9. TAO Z, Loo S, Su L, Tan S, et al
    Angiopoietin-1 enhanced myocyte mitosis, engraftment, and the reparability of hiPSC-CMs for treatment of myocardial infarction.
    Cardiovasc Res. 2020 Jul 14. pii: 5871500. doi: 10.1093.
    PubMed     Abstract available


    June 2020
  10. PERRINO C, Ferdinandy P, Botker HE, Brundel BJJM, et al
    Improving Translational Research in Sex-specific Effects of Comorbidities and Risk Factors in Ischemic Heart Disease and Cardioprotection: Position Paper and Recommendations of the ESC Working Group on Cellular Biology of the Heart.
    Cardiovasc Res. 2020 Jun 2. pii: 5850402. doi: 10.1093.
    PubMed     Abstract available


  11. ANGIOLILLO DJ, Baber U, Mehran R
    Ticagrelor monotherapy in patients with diabetes mellitus undergoing percutaneous coronary interventions: insights from the TWILIGHT trial.
    Cardiovasc Res. 2020;116:e70-e72.
    PubMed    


  12. LI J, Gong Y, Wang W, Yang Q, et al
    Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR.
    Cardiovasc Res. 2020;116:1349-1356.
    PubMed     Abstract available


    May 2020
  13. NICCOLI G, Luescher TF, Crea F
    Decreased myocardial infarction admissions during COVID times: what can we learn?
    Cardiovasc Res. 2020 May 28. pii: 5847828. doi: 10.1093.
    PubMed    


  14. NAMBU H, Takada S, Maekawa S, Matsumoto J, et al
    Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance.
    Cardiovasc Res. 2020 May 13. pii: 5836830. doi: 10.1093.
    PubMed     Abstract available


  15. KAUR A, Mackin ST, Schlosser K, Wong FL, et al
    Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease.
    Cardiovasc Res. 2020;116:1113-1124.
    PubMed     Abstract available


  16. SI R, Zhang Q, Tsuji-Hosokawa A, Watanabe M, et al
    Overexpression of p53 due to excess protein O-GlcNAcylation is associated with coronary microvascular disease in type 2 diabetes.
    Cardiovasc Res. 2020;116:1186-1198.
    PubMed     Abstract available


  17. HOOGENDOORN A, Kok AM, Hartman EMJ, de Nisco G, et al
    Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics.
    Cardiovasc Res. 2020;116:1136-1146.
    PubMed     Abstract available


  18. GOLLMANN-TEPEKOYLU C, Polzl L, Graber M, Hirsch J, et al
    miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy.
    Cardiovasc Res. 2020;116:1226-1236.
    PubMed     Abstract available


    April 2020
  19. KOMPA AR, Greening DW, Kong AM, McMillan PJ, et al
    Sustained subcutaneous delivery of secretome of human cardiac stem cells promotes cardiac repair following myocardial infarction.
    Cardiovasc Res. 2020 Apr 6. pii: 5816595. doi: 10.1093.
    PubMed     Abstract available


  20. OWENIER C, Hesse J, Alter C, Ding Z, et al
    Novel technique for the simultaneous isolation of cardiac fibroblasts and epicardial stromal cells from the infarcted murine heart.
    Cardiovasc Res. 2020;116:1047-1058.
    PubMed     Abstract available


  21. ROCZKOWSKY A, Chan BYH, Lee TYT, Mahmud Z, et al
    Myocardial MMP-2 contributes to SERCA2a proteolysis during cardiac ischaemia-reperfusion injury.
    Cardiovasc Res. 2020;116:1021-1031.
    PubMed     Abstract available


    March 2020
  22. GOROG DA, Farag M, Spinthakis N, Yellon DM, et al
    Effect of remote ischaemic conditioning on platelet reactivity and endogenous fibrinolysis in ST-elevation myocardial infarction- a substudy of the CONDI-2/ERIC-PPCI randomised controlled trial.
    Cardiovasc Res. 2020 Mar 12. pii: 5803645. doi: 10.1093.
    PubMed     Abstract available


  23. BAIREY MERZ CN, Pepine CJ, Shimokawa H, Berry C, et al
    Treatment of coronary microvascular dysfunction.
    Cardiovasc Res. 2020;116:856-870.
    PubMed     Abstract available


  24. PADRO T, Manfrini O, Bugiardini R, Canty J, et al
    ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on 'coronary microvascular dysfunction in cardiovascular disease'.
    Cardiovasc Res. 2020;116:741-755.
    PubMed     Abstract available


  25. WAHEED N, Elias-Smale S, Malas W, Maas AH, et al
    Sex differences in non-obstructive coronary artery disease.
    Cardiovasc Res. 2020;116:829-840.
    PubMed     Abstract available


  26. SECHTEM U, Brown D, Godo S, Lanza GA, et al
    Coronary microvascular dysfunction in stable ischaemic heart disease (non-obstructive coronary artery disease and obstructive coronary artery disease).
    Cardiovasc Res. 2020;116:771-786.
    PubMed     Abstract available


  27. ONG P, Safdar B, Seitz A, Hubert A, et al
    Diagnosis of coronary microvascular dysfunction in the clinic.
    Cardiovasc Res. 2020;116:841-855.
    PubMed     Abstract available


  28. LAKSHMANAN S, Shekar C, Kinninger A, Dahal S, et al
    Comparison of mineral oil and non-mineral oil placebo on coronary plaque progression by coronary computed tomography angiography.
    Cardiovasc Res. 2020;116:479-482.
    PubMed    


  29. SPADACCIO C, Antoniades C, Nenna A, Chung C, et al
    Preventing treatment failures in coronary artery disease: what can we learn from the biology of in-stent restenosis, vein graft failure, and internal thoracic arteries?
    Cardiovasc Res. 2020;116:505-519.
    PubMed     Abstract available


  30. LOU X, Zhao M, Fan C, Fast VG, et al
    N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts.
    Cardiovasc Res. 2020;116:671-685.
    PubMed     Abstract available


  31. GAO C, Wang R, Li B, Guo Y, et al
    TXNIP/Redd1 signalling and excessive autophagy: a novel mechanism of myocardial ischaemia/reperfusion injury in mice.
    Cardiovasc Res. 2020;116:645-657.
    PubMed     Abstract available


  32. BOISGUERIN P, Covinhes A, Gallot L, Barrere C, et al
    A novel therapeutic peptide targeting myocardial reperfusion injury.
    Cardiovasc Res. 2020;116:633-644.
    PubMed     Abstract available


    February 2020
  33. KUANG Y, Li X, Liu X, Wei L, et al
    Vascular endothelial S1pr1 ameliorates adverse cardiac remodeling via stimulating reparative macrophage proliferation after myocardial infarction.
    Cardiovasc Res. 2020 Feb 24. pii: 5753950. doi: 10.1093.
    PubMed     Abstract available


  34. MOLITOR M, Rudi WS, Garlapati V, Finger S, et al
    Nox2+ Myeloid cells drive vascular inflammation and endothelial dysfunction in heart failure after myocardial infarction via angiotensin II receptor type 1.
    Cardiovasc Res. 2020 Feb 20. pii: 5741408. doi: 10.1093.
    PubMed     Abstract available


  35. PHAM TP, Boon RA
    Exosomes and non-coding RNA, the healers of the heart?
    Cardiovasc Res. 2020;116:258-259.
    PubMed    


  36. MORROW A, Sidik N, Berry C
    ISCHEMIA: new questions from a landmark trial.
    Cardiovasc Res. 2020;116:e23-e25.
    PubMed    


  37. SCHMIDT C, Katus HA
    Scientists on the Spot: Moving forward from myocardial injury.
    Cardiovasc Res. 2020;116:e29.
    PubMed    


    December 2019
  38. COMMANDEUR F, Slomka PJ, Goeller M, Chen X, et al
    Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study.
    Cardiovasc Res. 2019 Dec 19. pii: 5680420. doi: 10.1093.
    PubMed     Abstract available


  39. PEET C, Ivetic A, Bromage DI, Shah AM, et al
    Cardiac monocytes and macrophages after myocardial infarction.
    Cardiovasc Res. 2019 Dec 16. pii: 5678786. doi: 10.1093.
    PubMed     Abstract available


    November 2019
  40. PETERSON BE, Bhatt DL
    Minding the Gaps in Post-Myocardial Infarction Mortality Between Sweden and the UK.
    Cardiovasc Res. 2019 Nov 28. pii: 5646649. doi: 10.1093.
    PubMed    


  41. SAMIDURAI A, Roh SK, Prakash M, Durrant D, et al
    STAT3-miR-17/20 Signaling Axis Plays a Critical Role in Attenuating Myocardial Infarction following Rapamycin Treatment in Diabetic mice.
    Cardiovasc Res. 2019 Nov 18. pii: 5628225. doi: 10.1093.
    PubMed     Abstract available


  42. LUTGENS E
    rs1883832: a CD40 single nucleotide polymorphism for predicting coronary heart disease in humans.
    Cardiovasc Res. 2019 Nov 13. pii: 5625153. doi: 10.1093.
    PubMed    


  43. KONIJNENBERG LSF, Damman P, Duncker DJ, Kloner RA, et al
    Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction.
    Cardiovasc Res. 2019 Nov 9. pii: 5618723. doi: 10.1093.
    PubMed     Abstract available


  44. ANAND A, Mills NL
    Diagnosing myocardial infarction in the era of high-sensitivity troponin: the High-STEACS trial.
    Cardiovasc Res. 2019 Nov 7. pii: 5614321. doi: 10.1093.
    PubMed    


  45. FILIPPATOS G, Farmakis D
    A look back: the quest for thrombosis in heart failure continues after COMMANDER HF.
    Cardiovasc Res. 2019;115:e140-e142.
    PubMed    


    October 2019
  46. HAUSENLOY DJ, Botker HE
    Why did remote ischaemic conditioning not improve clinical outcomes in acute myocardial infarction in the CONDI-2/ERIC-PPCI trial?
    Cardiovasc Res. 2019 Oct 17. pii: 5588934. doi: 10.1093.
    PubMed    


    August 2019
  47. SULTAN CS, Weitnauer M, Turinsky M, Kessler T, et al
    Functional association of a CD40 gene single nucleotide polymorphism with the pathogenesis of coronary heart disease.
    Cardiovasc Res. 2019 Aug 2. pii: 5542951. doi: 10.1093.
    PubMed     Abstract available


    July 2019
  48. ALABAS OA, Jernberg T, Pujades-Rodriguez M, Rutherford MJ, et al
    Statistics on mortality following acute myocardial infarction in 842,897 Europeans.
    Cardiovasc Res. 2019 Jul 26. pii: 5539698. doi: 10.1093.
    PubMed     Abstract available


  49. SCHWACH V, Fernandes MG, Maas S, Gerhardt S, et al
    Expandable human cardiovascular progenitors from stem cells for regenerating mouse heart after myocardial infarction.
    Cardiovasc Res. 2019 Jul 9. pii: 5530198. doi: 10.1093.
    PubMed     Abstract available


    June 2019
  50. YANG CF, Chen YY, Singh JP, Hsu SF, et al
    Targeting Protein Tyrosine Phosphatase PTP-PEST for Therapeutic Intervention in Acute Myocardial Infarction.
    Cardiovasc Res. 2019 Jun 22. pii: 5522027. doi: 10.1093.
    PubMed     Abstract available


  51. HOYER FF, Nahrendorf M
    Interferon- regulates cardiac myeloid cells in myocardial infarction.
    Cardiovasc Res. 2019 Jun 4. pii: 5510546. doi: 10.1093.
    PubMed    


    May 2019
  52. HUANG P, Wang L, Li Q, Tian X, et al
    Atorvastatin Enhances the Therapeutic Efficacy of Mesenchymal Stem Cells Derived Exosomes in Acute Myocardial Infarction via Up-regulating Long Non-coding RNA H19.
    Cardiovasc Res. 2019 May 22. pii: 5497485. doi: 10.1093.
    PubMed     Abstract available


  53. SCARSINI R, Banning AP
    DEFINE-ing the next steps in interventional cardiology: updates on coronary physiology, acute myocardial infarction, and dual-antiplatelet therapy from American College of Cardiology 2019.
    Cardiovasc Res. 2019 May 15. pii: 5489797. doi: 10.1093.
    PubMed    


    April 2019
  54. FINGER S, Knorr M, Molitor M, Schuler R, et al
    A sequential interferon gamma directed chemotactic cellular immune response determines survival and cardiac function post myocardial infarction.
    Cardiovasc Res. 2019 Apr 5. pii: 5428148. doi: 10.1093.
    PubMed     Abstract available


    March 2019
  55. GAST M, Rauch B, Haghikia A, Nakagawa S, et al
    Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients.
    Cardiovasc Res. 2019 Mar 29. pii: 5423185. doi: 10.1093.
    PubMed     Abstract available


  56. DE KLEIJN DPV, Chong SY, Wang X, Yatim SMJM, et al
    Toll-like Receptor 7 Deficiency Promotes Survival and Reduces Adverse Left Ventricular Remodeling After Myocardial Infarction.
    Cardiovasc Res. 2019 Mar 4. pii: 5369232. doi: 10.1093.
    PubMed     Abstract available


  57. BEGUIER F, Epelman S
    Endocannabinoid signalling: bone marrow monocytes and neutrophils follow their nose into ischaemic tissue.
    Cardiovasc Res. 2019;115:482-484.
    PubMed    


    January 2019
  58. ZABCZYK M, Natorska J, Zalewski J, Undas A, et al
    Fibrin biofilm can be detected on intracoronary thrombi aspirated from patients with acute myocardial infarction.
    Cardiovasc Res. 2019 Jan 28. pii: 5303509. doi: 10.1093.
    PubMed    


  59. MADONNA R, Van Laake LW, Botker HE, Davidson SM, et al
    ESC Working Group on Cellular Biology of the Heart: Tissue Engineering and Cell-Based Therapies for Cardiac Repair in Ischemic Heart Disease and Heart Failure.
    Cardiovasc Res. 2019 Jan 17. pii: 5292411. doi: 10.1093.
    PubMed     Abstract available


  60. BERRY C, Bengel FM
    Impaired coronary flow reserve: a pre-requisite for coronary revascularization.
    Cardiovasc Res. 2019;115:4-5.
    PubMed    


  61. DESAI MY
    Noninvasive detection of perivascular inflammation by coronary computed tomography in the CRISP-CT study and its implications for residual cardiovascular risk.
    Cardiovasc Res. 2019;115:e3-e4.
    PubMed    


    October 2018
  62. ROE AT, Ruud M, Espe EK, Manfra O, et al
    Regional diastolic dysfunction in post-infarction heart failure: role of local mechanical load and SERCA expression.
    Cardiovasc Res. 2018 Oct 23. pii: 5142689. doi: 10.1093.
    PubMed     Abstract available


  63. MATSUMOTO K, Obana M, Kobayashi A, Kihara M, et al
    Blockade of NKG2D/NKG2D Ligand Interaction Attenuated Cardiac Remodeling after Myocardial Infarction.
    Cardiovasc Res. 2018 Oct 11. pii: 5126925. doi: 10.1093.
    PubMed     Abstract available


  64. KOENEN RR
    No hearty reception; infusion of CXCL4 impedes tissue repair by macrophages after myocardial infarction.
    Cardiovasc Res. 2018 Oct 5. pii: 5115993. doi: 10.1093.
    PubMed    


  65. KIMURA T, Tajiri K, Sato A, Sakai S, et al
    Tenascin-C Accelerates Adverse Ventricular Remodeling after Myocardial Infarction by Modulating Macrophage Polarization.
    Cardiovasc Res. 2018 Oct 5. pii: 5122727. doi: 10.1093.
    PubMed     Abstract available


    September 2018
  66. SCHLOSS MJ, Horckmans M, Guillamat-Prats R, Hering D, et al
    2-arachidonoylglycerol mobilizes myeloid cells and worsens heart function after acute myocardial infarction.
    Cardiovasc Res. 2018 Sep 28. pii: 5115994. doi: 10.1093.
    PubMed     Abstract available


    August 2018
  67. LINDSEY ML, Jung M, Yabluchanskiy A, Cannon PL, et al
    Exogenous CXCL4 Infusion Inhibits Macrophage Phagocytosis by Limiting CD36 Signaling to Enhance Post-myocardial Infarction Cardiac Dilation and Mortality.
    Cardiovasc Res. 2018 Aug 29. pii: 5086353. doi: 10.1093.
    PubMed     Abstract available


  68. VILAHUR G, Gutierrez M, Casani L, Lambert C, et al
    P2Y12 antagonists and cardiac repair post-myocardial infarction: global and regional heart function analysis and molecular assessments in pigs.
    Cardiovasc Res. 2018 Aug 14. pii: 5074301. doi: 10.1093.
    PubMed     Abstract available


  69. BUENO-BETI C, Novella S, Soleti R, Mompeon A, et al
    Microparticles Harboring Sonic Hedgehog Morphogen Improve the Vasculogenesis Capacity of Endothelial Progenitor Cells Derived from Myocardial Infarction Patients.
    Cardiovasc Res. 2018 Aug 14. pii: 5074321. doi: 10.1093.
    PubMed     Abstract available


  70. ZHAO M, Fan C, Ernst PJ, Tang Y, et al
    Y-27632 Preconditioning Enhances Transplantation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Myocardial Infarction Mice.
    Cardiovasc Res. 2018 Aug 13. pii: 5073049. doi: 10.1093.
    PubMed     Abstract available


  71. TOKUTOME M, Matoba T, Nakano Y, Okahara A, et al
    PPARgamma-targeting Nanomedicine Promotes Cardiac Healing After Acute Myocardial Infarction by Skewing Monocyte/Macrophage Polarization in Preclinical Animal Models.
    Cardiovasc Res. 2018 Aug 3. pii: 5066356. doi: 10.1093.
    PubMed     Abstract available


    July 2018
  72. POL AV, Gil A, Tromp J, Sillje HHW, et al
    OPLAH ablation leads to accumulation of 5-oxoproline, oxidative stress, fibrosis and elevated fillings pressures: a murine model for heart failure with a preserved ejection fraction.
    Cardiovasc Res. 2018 Jul 19. pii: 5056075. doi: 10.1093.
    PubMed     Abstract available


  73. PANAHI M, Papanikolaou A, Torabi A, Zhang JG, et al
    Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition.
    Cardiovasc Res. 2018 Jul 14. pii: 5054000. doi: 10.1093.
    PubMed     Abstract available


  74. WANG Y, Liu J, Kong Q, Cheng H, et al
    Cardiomyocyte-Specific Deficiency of HSPB1 Worsens Cardiac Dysfunction by Activating NFkappaB-Mediated Leukocyte Recruitment After Myocardial Infarction.
    Cardiovasc Res. 2018 Jul 2. pii: 5047821. doi: 10.1093.
    PubMed     Abstract available


    June 2018
  75. LINDSEY ML
    Reg-ulating macrophage infiltration to alter wound healing following myocardial infarction.
    Cardiovasc Res. 2018 Jun 15. pii: 5038408. doi: 10.1093.
    PubMed    


    May 2018
  76. LORCHNER H, Hou Y, Adrian-Segarra JM, Kulhei J, et al
    Reg proteins direct accumulation of functionally distinct macrophage subsets after myocardial infarction.
    Cardiovasc Res. 2018 May 30. pii: 5025270. doi: 10.1093.
    PubMed     Abstract available


    March 2018
  77. DEUTSCH MA, Doppler SA, Li X, Lahm H, et al
    Reactivation of the Nkx2.5 cardiac enhancer after myocardial infarction does not presage myogenesis.
    Cardiovasc Res. 2018 Mar 20. pii: 4944453. doi: 10.1093.
    PubMed     Abstract available


  78. CHEN CW, Wang LL, Zaman S, Gordon J, et al
    Sustained Release of Endothelial Progenitor Cell-Derived Extracellular Vesicles from Shear-Thinning Hydrogels Improves Angiogenesis and Promotes Function after Myocardial Infarction.
    Cardiovasc Res. 2018 Mar 16. pii: 4939452. doi: 10.1093.
    PubMed     Abstract available


    November 2017
  79. ZIEGLER KA, Ahles A, Wille T, Kerler J, et al
    Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice.
    Cardiovasc Res. 2017 Nov 24. pii: 4657089. doi: 10.1093.
    PubMed     Abstract available


    September 2017
  80. PARK KC, Gaze DC, Collinson PO, Marber MS, et al
    Cardiac troponins: from myocardial infarction to chronic disease.
    Cardiovasc Res. 2017 Sep 14. doi: 10.1093.
    PubMed     Abstract available


    July 2017
  81. BAYOUMI AS, Teoh JP, Aonuma T, Yuan Z, et al
    MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition.
    Cardiovasc Res. 2017 Jul 11. doi: 10.1093.
    PubMed     Abstract available


    June 2017
  82. SCHOBESBERGER S, Wright P, Tokar S, Bhargava A, et al
    T-tubule remodelling disturbs localized beta2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure.
    Cardiovasc Res. 2017;113:770-782.
    PubMed     Abstract available


  83. PERRINO C, Barabasi AL, Condorelli G, Davidson SM, et al
    Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart.
    Cardiovasc Res. 2017;113:725-736.
    PubMed     Abstract available


  84. MANSOR LS, Sousa Fialho MDL, Yea G, Coumans WA, et al
    Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation.
    Cardiovasc Res. 2017;113:737-748.
    PubMed     Abstract available


    May 2017
  85. HAUSENLOY DJ, Garcia-Dorado D, Botker HE, Davidson SM, et al
    Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart.
    Cardiovasc Res. 2017;113:564-585.
    PubMed     Abstract available


  86. CHEN Z, Xie J, Hao H, Lin H, et al
    Ablation of periostin inhibits post-infarction myocardial regeneration in neonatal mice mediated by the phosphatidylinositol 3 kinase/glycogen synthase kinase 3beta/cyclin D1 signalling pathway.
    Cardiovasc Res. 2017;113:620-632.
    PubMed     Abstract available


  87. VINCENT A, Sportouch C, Covinhes A, Barrere C, et al
    Cardiac mGluR1 metabotropic receptors in cardioprotection.
    Cardiovasc Res. 2017;113:644-655.
    PubMed     Abstract available


  88. VALLE RALEIGH J, Mauro AG, Devarakonda T, Marchetti C, et al
    Reperfusion therapy with recombinant human relaxin-2 (Serelaxin) attenuates myocardial infarct size and NLRP3 inflammasome following ischemia/reperfusion injury via eNOS-dependent mechanism.
    Cardiovasc Res. 2017;113:609-619.
    PubMed     Abstract available


    April 2017
  89. WANG Z, Huang S, Sheng Y, Peng X, et al
    Topiramate modulates post-infarction inflammation primarily by targeting monocytes or macrophages.
    Cardiovasc Res. 2017;113:475-487.
    PubMed     Abstract available


    March 2017
  90. BROMAGE DI, Pickard JM, Rossello X, Ziff OJ, et al
    Remote ischaemic conditioning reduces infarct size in animal in vivo models of ischaemia-reperfusion injury: a systematic review and meta-analysis.
    Cardiovasc Res. 2017;113:288-297.
    PubMed     Abstract available


    February 2017
  91. LIM S, Lee GY, Park HS, Lee DH, et al
    Attenuation of carotid neointimal formation after direct delivery of a recombinant adenovirus expressing glucagon-like peptide-1 in diabetic rats.
    Cardiovasc Res. 2017;113:183-194.
    PubMed     Abstract available


    January 2017
  92. JOSE ALBURQUERQUE-BEJAR J, Barba I, Valls-Lacalle L, Ruiz-Meana M, et al
    Remote ischemic conditioning provides humoural cross-species cardioprotection through glycine receptor activation.
    Cardiovasc Res. 2017;113:52-60.
    PubMed     Abstract available


  93. RAWAL S, Munasinghe PE, Shindikar A, Paulin J, et al
    Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy.
    Cardiovasc Res. 2017;113:90-101.
    PubMed     Abstract available


    November 2016
  94. LI L, Li J, Drum BM, Chen Y, et al
    Loss of AKAP150 promotes pathological remodelling and heart failure propensity by disrupting calcium cycling and contractile reserve.
    Cardiovasc Res. 2016.
    PubMed     Abstract available


    July 2016
  95. TAKADA S, Masaki Y, Kinugawa S, Matsumoto J, et al
    Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of GLP-1 receptor signaling.
    Cardiovasc Res. 2016.
    PubMed     Abstract available


Thank you for your interest in scientific medicine.


AMEDEO Ischemic Heart Disease is free of charge.
This policy is made possible thanks to a media sponsorship by Boehringer Ingelheim.

Design: