Home The Word Brain My Amedeo FAQ Privacy About   


Amedeo C49

English + 你好 (nǐ hǎo) = limitless possibilities.
Start learning Mandarin Chinese today—for free, forever.

Amedeo C49 is completely free, for life. Next week: +49.


  Neurosurgery

  Free Subscription


Articles published in Exp Neurol

Retrieve available abstracts of 110 articles:
HTML format



Single Articles


    October 2025
  1. SEO JW, Balog BM, Pinkevitch M, Niemi JP, et al
    Somatosensory neurons respond heterogeneously to a conditioning lesion.
    Exp Neurol. 2025;392:115342.
    PubMed     Abstract available


  2. PAN W, Wang S, Liu Y, Qin S, et al
    Electroacupuncture ameliorates sleep deprivation-induced insomnia in mice by regulating the dopaminergic projections from VTA to NAc.
    Exp Neurol. 2025;392:115351.
    PubMed     Abstract available


    September 2025
  3. BROCK JH, Shevinsky CA, Graham L, Staufenberg E, et al
    Dosing parameters for grafting human neural stem cells into sites of spinal cord injury.
    Exp Neurol. 2025;395:115480.
    PubMed     Abstract available



  4. Expression of concern: "MFGE8/Integrin beta3 pathway alleviates apoptosis and inflammation in early brain injury after subarachnoid hemorrhage in rats" [EXP NEUROL, Volume 272 (2015) Pages 120-127].
    Exp Neurol. 2025;391:115297.
    PubMed    



  5. Expression of concern: "Mitoquinone attenuates blood-brain barrier disruption through Nrf2/PHB2/OPA1 pathway after subarachnoid hemorrhage in rats" [EXP NEUROL, Volume 317 (2019) Pages 1-9].
    Exp Neurol. 2025;391:115295.
    PubMed    



  6. Expression of concern: "ErbB4 protects against neuronal apoptosis via activation of YAP/PIK3CB signaling pathway in a rat model of subarachnoid hemorrhage" [EXP NEUROL, Volume 297 (2017) Pages 92-100].
    Exp Neurol. 2025;391:115294.
    PubMed    



  7. Expression of concern: "LJ529 attenuates mast cell-related inflammation via A(3)R-PKCepsilon-ALDH2 pathway after subarachnoid hemorrhage in rats" [EXP NEUROL, Volume 340 (2021) 113686].
    Exp Neurol. 2025;391:115292.
    PubMed    


    August 2025
  8. CHEN Y, Ren L, Xia J, Li B, et al
    Farrerol confers neuroprotection in spinal cord injury by regulating macrophages/microglia polarization through the JAK2/STAT3 pathway.
    Exp Neurol. 2025;394:115448.
    PubMed     Abstract available


  9. LIU X, Liu X, Lin J, Chen K, et al
    Ketogenic diet and quercetin promote the recovery of motor function in rats with spinal cord injury.
    Exp Neurol. 2025 Aug 7:115415. doi: 10.1016/j.expneurol.2025.115415.
    PubMed     Abstract available


  10. SWARTS EA, Munro AI, Bannerman CA, Zielonka JR, et al
    Integrating sensitive motor tasks with histopathology detects sex differences in recovery after spinal cord injury.
    Exp Neurol. 2025 Aug 7:115417. doi: 10.1016/j.expneurol.2025.115417.
    PubMed     Abstract available


  11. REID SK, Tran AV, Leal-Garcia ME, Devaraj S, et al
    Sex-dependent effects of peptidylarginine deiminases on neutrophil function and long-term outcomes after spinal cord injury.
    Exp Neurol. 2025 Aug 4:115414. doi: 10.1016/j.expneurol.2025.115414.
    PubMed     Abstract available


    July 2025
  12. WEISE L, Joseph R, Sirianni QEA, Bryan JA, et al
    Full manuscript title: Ultrasound-guided intraparenchymal injection of slow release Chondroitinase ABC-37 in the chronic phase of spinal cord injury improves long-term recovery.
    Exp Neurol. 2025;393:115402.
    PubMed     Abstract available


  13. FORSTON MJ, Ohkubo A, Forston MD, DeHoff ME, et al
    CGRP(+) fibers sprout within gastrocnemius muscle following complete spinal cord injury in rodents.
    Exp Neurol. 2025 Jul 26:115400. doi: 10.1016/j.expneurol.2025.115400.
    PubMed     Abstract available


  14. TANG Q, Zhou X, Zhang B, Ma C, et al
    Integrative multi-omics and machine learning identify CALR as a diagnostic and therapeutic target in aneurysmal subarachnoid hemorrhage.
    Exp Neurol. 2025;393:115396.
    PubMed     Abstract available


  15. LIU Y, Wang R, Sun F, Wang N, et al
    Stereotactic infusion of rotenone into the SN induced a late-stage model of Parkinson's disease.
    Exp Neurol. 2025 Jul 20:115382. doi: 10.1016/j.expneurol.2025.115382.
    PubMed     Abstract available


  16. HEMATI-GOURABI M, Cao T, Mills AE, Rice EP, et al
    Morphological regulation of wound repair astrocytes by leucine zipper-bearing kinase-AKT signaling after spinal cord injury.
    Exp Neurol. 2025;393:115379.
    PubMed     Abstract available


    June 2025
  17. LIN FX, Gu HY, He W
    Corrigendum to "MAPK signaling pathway in spinal cord injury: Mechanisms and therapeutic potential" [Experimental Neurology 383 (2025) 115043].
    Exp Neurol. 2025 Jun 26:115353. doi: 10.1016/j.expneurol.2025.115353.
    PubMed    


  18. MATTHIAS J, Lukas LP, Bruningk SC, Bourguignon L, et al
    Response to the Editor - Exploring the Potential of routine serological markers in predicting neurological outcomes in spinal cord injury.
    Exp Neurol. 2025 Jun 16:115346. doi: 10.1016/j.expneurol.2025.115346.
    PubMed    


  19. CHAURASIA S, Kumar V
    Letter to the editor: "Exploring the potential of routine serological markers in predicting neurological outcomes in spinal cord injury" by Jan Matthias et al.
    Exp Neurol. 2025;392:115345.
    PubMed    


    May 2025
  20. BESSEN MA, Marian OC, O'Hare Doig RL, Sorby-Adams A, et al
    Intraoperative ultrasound monitoring of spinal cord swelling and parenchymal changes in a porcine model of thoracic spinal cord injury.
    Exp Neurol. 2025;392:115320.
    PubMed     Abstract available


  21. ZHU Z, Xu Y, Wang K, Xu X, et al
    The role of astrocyte-derived extracellular vesicles in cellular microenvironment remodeling after spinal cord injury: A study based on quantitative proteomics analysis.
    Exp Neurol. 2025 May 27:115321. doi: 10.1016/j.expneurol.2025.115321.
    PubMed     Abstract available


    April 2025
  22. BLANKE EN, Holmes GM
    Dysfunction of pancreatic exocrine secretion after experimental spinal cord injury.
    Exp Neurol. 2025;389:115257.
    PubMed     Abstract available


    March 2025
  23. FRANCOS-QUIJORNA I, Lopez-Gonzalez N, Caro-Canton M, Sanchez-Fernandez A, et al
    Lack of effects of Resolvin D1 after spinal cord injury in mice.
    Exp Neurol. 2025;388:115226.
    PubMed     Abstract available


  24. FRANCA FS, Gensel JC
    Redefining macrophage phenotypes after spinal cord injury: An open data approach.
    Exp Neurol. 2025 Mar 18:115222. doi: 10.1016/j.expneurol.2025.115222.
    PubMed     Abstract available


  25. GUO J, Zhang Q, Li B, Liu S, et al
    Sex-related disparities in mobility, sensory function, and psychological outcomes in Wistar and Sprague-Dawley rats following spinal cord injury.
    Exp Neurol. 2025 Mar 5:115204. doi: 10.1016/j.expneurol.2025.115204.
    PubMed     Abstract available


    February 2025
  26. HELLENBRAND DJ, Lee JS, Mickelson EJ, Baer MC, et al
    Mineral coated microparticles delivering Interleukin-4, Interleukin-10, and Interleukin-13 reduce inflammation and improve function after spinal cord injury in a rat.
    Exp Neurol. 2025;386:115179.
    PubMed     Abstract available


  27. WU Z, Sun J, Liao Z, Sun T, et al
    Activation of PAR1 contributes to ferroptosis of Schwann cells and inhibits regeneration of myelin sheath after sciatic nerve crush injury in rats via Hippo-YAP/ACSL4 pathway.
    Exp Neurol. 2025;384:115053.
    PubMed     Abstract available


    January 2025
  28. JONES LAT, Field-Fote EC, Magnuson D, Tom V, et al
    Outcome measures in rodent models for spinal cord injury and their human correlates.
    Exp Neurol. 2025 Jan 28:115169. doi: 10.1016/j.expneurol.2025.115169.
    PubMed     Abstract available


  29. GOLTASH S, Khodr R, Bui TV, Laliberte AM, et al
    An optogenetic mouse model of hindlimb spasticity after spinal cord injury.
    Exp Neurol. 2025 Jan 23:115157. doi: 10.1016/j.expneurol.2025.115157.
    PubMed     Abstract available


  30. YU Z, Zhang H, Li L, Li Z, et al
    Corrigendum to "Microglia-mediated pericytes migration and fibroblast transition via S1P/S1P3/YAP signaling pathway after spinal cord injury" [Vol. 379 of Experimental Neurology (September 2024)].
    Exp Neurol. 2025 Jan 21:115148. doi: 10.1016/j.expneurol.2025.115148.
    PubMed    


  31. GOTOH S, Kawabori M, Yamaguchi S, Nakahara Y, et al
    Intranasal administration of stem cell-derived exosome alleviates cognitive impairment against subarachnoid hemorrhage.
    Exp Neurol. 2025;386:115143.
    PubMed     Abstract available


  32. YANG Y, Shao Y, Dai Q, Zhang Y, et al
    Transcription factor AP-2 Beta, a potential target of repetitive Transspinal magnetic stimulation in spinal cord injury treatment, reduced inflammation and alleviated spinal cord injury.
    Exp Neurol. 2025;386:115144.
    PubMed     Abstract available


    December 2024
  33. GUO XJ, He LW, Chang JQ, Su WN, et al
    Epidural electrical stimulation combined with photobiomodulation restores hindlimb motor function in rats with thoracic spinal cord injury.
    Exp Neurol. 2024;385:115112.
    PubMed     Abstract available


  34. SHEORAN A, Fond KA, Davis LM, Huie JR, et al
    Data reporting quality and semantic interoperability increase with community-based data elements (CoDEs). Analysis of the open data commons for spinal cord injury (ODC-SCI).
    Exp Neurol. 2024;385:115100.
    PubMed     Abstract available


  35. HOFFMAN DB, Raymond-Pope CJ, Pritchard EE, Bruzina AS, et al
    Differential evaluation of neuromuscular injuries to understand re-innervation at the neuromuscular junction.
    Exp Neurol. 2024;382:114996.
    PubMed     Abstract available


    November 2024
  36. REVILLA-GONZALEZ G, Del Carmen Gonzalez-Montelongo M, Vasconcelos EJR, Urena J, et al
    Delayed changes in the transcriptomic profile of cerebral arteries in a rat model of subarachnoid hemorrhage.
    Exp Neurol. 2024 Nov 26:115074. doi: 10.1016/j.expneurol.2024.115074.
    PubMed     Abstract available


  37. JIAJIA D, Wen Y, Enyan J, Xiaojian Z, et al
    PGAM5 promotes RIPK1-PANoptosome activity by phosphorylating and activating RIPK1 to mediate PANoptosis after subarachnoid hemorrhage in rats.
    Exp Neurol. 2024 Nov 25:115072. doi: 10.1016/j.expneurol.2024.115072.
    PubMed     Abstract available


  38. HAJIMIRZAEI P, Tabatabaei FSA, Nasibi-Sis H, Razavian RS, et al
    Schwann cell transplantation for remyelination, regeneration, tissue sparing, and functional recovery in spinal cord injury: A systematic review and meta-analysis of animal studies.
    Exp Neurol. 2024 Nov 21:115062. doi: 10.1016/j.expneurol.2024.115062.
    PubMed     Abstract available


  39. GU HY, Liu N
    Mechanism of effect and therapeutic potential of NLRP3 inflammasome in spinal cord injury.
    Exp Neurol. 2024 Nov 19:115059. doi: 10.1016/j.expneurol.2024.115059.
    PubMed     Abstract available


  40. AHMADIAN M, Erskine E, Wainman L, Wearing OH, et al
    Acute intermittent hypoxia elicits sympathetic neuroplasticity independent of peripheral chemoreflex activation and spinal cord tissue hypoxia in a rodent model of high-thoracic spinal cord injury.
    Exp Neurol. 2024;384:115054.
    PubMed     Abstract available


  41. LIN FX, Gu HY, He W
    MAPK signaling pathway in spinal cord injury: Mechanisms and therapeutic potential.
    Exp Neurol. 2024;383:115043.
    PubMed     Abstract available


  42. NOONAN VK, Humphreys S, Biering-Sorensen F, Charlifue S, et al
    Enhancing data standards to advance translation in spinal cord injury.
    Exp Neurol. 2024 Nov 8:115048. doi: 10.1016/j.expneurol.2024.115048.
    PubMed     Abstract available


    October 2024
  43. QIAN Y, Wang J, Chen J, Lin W, et al
    Multifaceted role of thrombin in subarachnoid hemorrhage: Focusing on cerebrospinal fluid circulation disorder.
    Exp Neurol. 2024 Oct 30:115036. doi: 10.1016/j.expneurol.2024.115036.
    PubMed     Abstract available


  44. XU Y, Wang X, Zhou X, Zeng W, et al
    Multiple strategies enhance the efficacy of MSC-Exos transplantation for spinal cord injury.
    Exp Neurol. 2024 Oct 29:115038. doi: 10.1016/j.expneurol.2024.115038.
    PubMed     Abstract available


  45. CUCARIAN J, Raposo P, Vavrek R, Nguyen A, et al
    No impact of anti-inflammatory medication on inflammation-driven recovery following cervical spinal cord injury in rats.
    Exp Neurol. 2024 Oct 29:115039. doi: 10.1016/j.expneurol.2024.115039.
    PubMed     Abstract available


  46. KONG J, Zhang Q, Zheng H, Tang D, et al
    Corrigendum to "TGN-020 ameliorates motor dysfunction post-spinal cord injury via enhancing astrocyte autophagy and mitigating inflammation by activating AQP4/PPAR-gamma/mTOR pathway" [Experimental Neurology volume 382 (2024) 114975].
    Exp Neurol. 2024 Oct 19:114998. doi: 10.1016/j.expneurol.2024.114998.
    PubMed    


  47. RONG Y, Kang Y, Wen J, Gong Q, et al
    Time-dependent arachidonic acid metabolism and functional changes in rats bladder tissue after suprasacral spinal cord injury.
    Exp Neurol. 2024 Oct 16:114989. doi: 10.1016/j.expneurol.2024.114989.
    PubMed     Abstract available


  48. HUIE JR, Torres-Espin A, Sacramento J, Keller AV, et al
    An infrastructure for qualified data sharing and team science in late-stage translational spinal cord injury research.
    Exp Neurol. 2024 Oct 9:114995. doi: 10.1016/j.expneurol.2024.114995.
    PubMed     Abstract available


  49. KALIMULLINA T, Sachdeva R, Pawar K, Cao S, et al
    Neuroprotective agents ineffective in mitigating autonomic dysreflexia following experimental spinal cord injury.
    Exp Neurol. 2024 Oct 9:114993. doi: 10.1016/j.expneurol.2024.114993.
    PubMed     Abstract available


    September 2024
  50. DING SQ, Yan HZ, Gao JX, Chen YQ, et al
    Genetic deletion of the apoptosis associated speck like protein containing a card in LysM(+) macrophages attenuates spinal cord injury by regulating M1/M2 polarization through ASC-dependent inflammasome signaling axis.
    Exp Neurol. 2024;382:114982.
    PubMed     Abstract available


  51. WILLIAMS PTJA, Schelbaum E, Ahmanna C, Alexander H, et al
    Combined biomaterial scaffold and neuromodulation strategy to promote tissue repair and corticospinal connectivity after spinal cord injury in a rodent model.
    Exp Neurol. 2024 Sep 25:114965. doi: 10.1016/j.expneurol.2024.114965.
    PubMed     Abstract available


  52. LV Y, Ji L, Dai H, Qiu S, et al
    Identification of key regulatory genes involved in myelination after spinal cord injury by GSEA analysis.
    Exp Neurol. 2024;382:114966.
    PubMed     Abstract available


  53. KONG J, Zhang Q, Zheng H, Tang D, et al
    TGN-020 ameliorates motor dysfunction post-spinal cord injury via enhancing astrocyte autophagy and mitigating inflammation by activating AQP4/PPAR-gamma/mTOR pathway.
    Exp Neurol. 2024 Sep 24:114975. doi: 10.1016/j.expneurol.2024.114975.
    PubMed     Abstract available


  54. HUANG Y, Bai J
    Ferroptosis in the neurovascular unit after spinal cord injury.
    Exp Neurol. 2024;381:114943.
    PubMed     Abstract available


  55. LUKOMSKA A, Rheaume BA, Frost MP, Theune WC, et al
    Augmenting fibronectin levels in injured adult CNS promotes axon regeneration in vivo.
    Exp Neurol. 2024;379:114877.
    PubMed     Abstract available


    August 2024
  56. MATTHIAS J, Lukas LP, Bruningk SC, Maier D, et al
    Exploring the potential of routine serological markers in predicting neurological outcomes in spinal cord injury.
    Exp Neurol. 2024 Aug 12:114918. doi: 10.1016/j.expneurol.2024.114918.
    PubMed     Abstract available


  57. LIU L, Liang Z, Zhang L, Feng Z, et al
    Corticothalamic input derived from corticospinal neurons contributes to chronic neuropathic pain after spinal cord injury.
    Exp Neurol. 2024 Aug 12:114923. doi: 10.1016/j.expneurol.2024.114923.
    PubMed     Abstract available


  58. WANG X, Zhu Z, Zhang Z, Liang Z, et al
    Astrocyte-derived lipocalin 2 promotes inflammation and scarring after spinal cord injury by activating SMAD in mice.
    Exp Neurol. 2024;380:114915.
    PubMed     Abstract available


  59. ZHANG Z, Li Z, Peng Y, Li Z, et al
    TRIM21-mediated ubiquitination of PLIN2 regulates neuronal lipid droplet accumulation after acute spinal cord injury.
    Exp Neurol. 2024 Aug 7:114916. doi: 10.1016/j.expneurol.2024.114916.
    PubMed     Abstract available


  60. BRUNINGK SC, Bourguignon L, Lukas LP, Maier D, et al
    Prediction of segmental motor outcomes in traumatic spinal cord injury: Advances beyond sum scores.
    Exp Neurol. 2024;380:114905.
    PubMed     Abstract available


  61. YAO XQ, Chen JY, Garcia-Segura ME, Wen ZH, et al
    Integrated multi-omics analysis reveals molecular changes associated with chronic lipid accumulation following contusive spinal cord injury.
    Exp Neurol. 2024 Aug 1:114909. doi: 10.1016/j.expneurol.2024.114909.
    PubMed     Abstract available


  62. HAKANSSON S, Tuci M, Bolliger M, Curt A, et al
    Data-driven prediction of spinal cord injury recovery: An exploration of current status and future perspectives.
    Exp Neurol. 2024 Aug 1:114913. doi: 10.1016/j.expneurol.2024.114913.
    PubMed     Abstract available


    July 2024
  63. DING PF, Liu XZ, Peng Z, Cui Y, et al
    miR-93-5p impairs autophagy-lysosomal pathway via TET3 after subarachnoid hemorrhage.
    Exp Neurol. 2024 Jul 31:114904. doi: 10.1016/j.expneurol.2024.114904.
    PubMed     Abstract available


  64. LU P, Graham L, Tran AN, Villarta A, et al
    A facilitatory role of astrocytes in axonal regeneration after acute and chronic spinal cord injury.
    Exp Neurol. 2024;379:114889.
    PubMed     Abstract available


  65. HU Z, Tan H, Zhang Y, Qi T, et al
    Irisflorentin improves functional recovery after spinal cord injury by protecting the blood-spinal cord barrier and promoting axonal growth.
    Exp Neurol. 2024;379:114886.
    PubMed     Abstract available


    June 2024
  66. ZUO Y, Wang J, Enkhjargal B, Doycheva D, et al
    Corrigendum to "Neurogenesis changes and the fate of progenitor cells after subarachnoid hemorrhage in rats" [Experimental Neurology 311 (2019) 274-284].
    Exp Neurol. 2024 Jun 26:114872. doi: 10.1016/j.expneurol.2024.114872.
    PubMed    


  67. ZHU L, Wang F, Xing J, Hu X, et al
    Modulatory effects of gut microbiota on innate and adaptive immune responses following spinal cord injury.
    Exp Neurol. 2024 Jun 12:114866. doi: 10.1016/j.expneurol.2024.114866.
    PubMed     Abstract available


  68. YANG L, Wu J, Zhang F, Zhang L, et al
    Microglia aggravate white matter injury via C3/C3aR pathway after experimental subarachnoid hemorrhage.
    Exp Neurol. 2024 Jun 10:114853. doi: 10.1016/j.expneurol.2024.114853.
    PubMed     Abstract available


  69. YU Z, Zhang H, Li L, Li Z, et al
    Microglia-mediated pericytes migration and fibroblast transition via S1P/S1P3/YAP signaling pathway after spinal cord injury.
    Exp Neurol. 2024 Jun 10:114864. doi: 10.1016/j.expneurol.2024.114864.
    PubMed     Abstract available


  70. GOODUS MT, Alfredo A, Carson KE, Dey P, et al
    Spinal cord injury-induced metabolic impairment and steatohepatitis develops in non-obese rats and is exacerbated by premorbid obesity.
    Exp Neurol. 2024 Jun 7:114847. doi: 10.1016/j.expneurol.2024.114847.
    PubMed     Abstract available


  71. ZHAI C, Wang Z, Cai J, Fang L, et al
    Repeated trans-spinal magnetic stimulation promotes microglial phagocytosis of myelin debris after spinal cord injury through LRP-1.
    Exp Neurol. 2024 Jun 1:114844. doi: 10.1016/j.expneurol.2024.114844.
    PubMed     Abstract available


    May 2024
  72. CHEN P, Lin MH, Li YX, Huang ZJ, et al
    Corrigendum to "Bexarotene enhances astrocyte phagocytosis via ABCA1-mediated pathways in a mouse model of subarachnoid hemorrhage" [Experimental Neurology 358 (2022) 114228].
    Exp Neurol. 2024 May 31:114839. doi: 10.1016/j.expneurol.2024.114839.
    PubMed    


  73. MICHEL-FLUTOT P, Cheng L, Thomas SJ, Lisi B, et al
    PTEN inhibition promotes robust growth of bulbospinal respiratory axons and partial recovery of diaphragm function in a chronic model of cervical contusion spinal cord injury.
    Exp Neurol. 2024 May 22:114816. doi: 10.1016/j.expneurol.2024.114816.
    PubMed     Abstract available


  74. TAN X, Li X, Li R, Meng W, et al
    beta-hydroxybutyrate alleviates neurological deficits by restoring glymphatic and inflammation after subarachnoid hemorrhage in mice.
    Exp Neurol. 2024;378:114819.
    PubMed     Abstract available


  75. GONZALEZ-ROTHI EJ, Allen LL, Seven YB, Ciesla MC, et al
    Prolonged intermittent hypoxia differentially regulates phrenic motor neuron serotonin receptor expression in rats following chronic cervical spinal cord injury.
    Exp Neurol. 2024 May 13:114808. doi: 10.1016/j.expneurol.2024.114808.
    PubMed     Abstract available


    April 2024
  76. PRINS CA, de Oliveira FL, de Mello Coelho V, Dos Santos Ribeiro EB, et al
    Galectin-3 absence alters lymphocytes populations dynamics behavior and promotes functional recovery after spinal cord injury in mice.
    Exp Neurol. 2024 Apr 24:114785. doi: 10.1016/j.expneurol.2024.114785.
    PubMed     Abstract available


  77. ZHOU K, Shi L, ZhenWang, Zhou J, et al
    Corrigendum to "RIP1-RIP3-DRP1 pathway regulates NLRP3 inflammasome activation following subarachnoid hemorrhage". Experimental Neurology. 2017 Sep: 295:116-124.
    Exp Neurol. 2024 Apr 23:114787. doi: 10.1016/j.expneurol.2024.114787.
    PubMed    


  78. SHEN Y, Zhang W, Chang H, Li Z, et al
    Galectin-3 modulates microglial activation and neuroinflammation in early brain injury after subarachnoid hemorrhage.
    Exp Neurol. 2024 Apr 16:114777. doi: 10.1016/j.expneurol.2024.114777.
    PubMed     Abstract available


  79. WU Q, Yuan K, Yao Y, Yao J, et al
    LAMC1 attenuates neuronal apoptosis via FAK/PI3K/AKT signaling pathway after subarachnoid hemorrhage.
    Exp Neurol. 2024;376:114776.
    PubMed     Abstract available


  80. CHENG W, Wei B, Liu W, Jin L, et al
    p97 inhibits integrated stress response-induced neuronal apoptosis after subarachnoid hemorrhage in mice by enhancing proteasome function.
    Exp Neurol. 2024 Apr 10:114778. doi: 10.1016/j.expneurol.2024.114778.
    PubMed     Abstract available


    March 2024
  81. MALLOY DC, Cote MP
    Multi-session transcutaneous spinal cord stimulation prevents chloride homeostasis imbalance and the development of hyperreflexia after spinal cord injury in rat.
    Exp Neurol. 2024 Mar 15:114754. doi: 10.1016/j.expneurol.2024.114754.
    PubMed     Abstract available


  82. SUN C, Rahman MSU, Enkhjargal B, Peng J, et al
    Corrigendum to 'Osteopontin modulates microglial activation states and attenuates inflammatory responses after subarachnoid hemorrhage in rats' [Experimental Neurology 371 (2024) 114585].
    Exp Neurol. 2024 Mar 6:114747. doi: 10.1016/j.expneurol.2024.114747.
    PubMed    


  83. DEMYANENKO SV, Kalyuzhnaya YN, Bachurin SS, Khaitin AM, et al
    Exogenous Hsp70 exerts neuroprotective effects in peripheral nerve rupture model.
    Exp Neurol. 2024;373:114670.
    PubMed     Abstract available


    February 2024
  84. MIAO X, Lin J, Li A, Gao T, et al
    AAV-mediated VEGFA overexpression promotes angiogenesis and recovery of locomotor function following spinal cord injury via PI3K/Akt signaling.
    Exp Neurol. 2024;375:114739.
    PubMed     Abstract available


  85. ALDRICH JC, Scheinfeld AR, Lee SE, Dusenbery KJ, et al
    Effects of dim light at night in C57BL/6 J mice on recovery after spinal cord injury.
    Exp Neurol. 2024;375:114725.
    PubMed     Abstract available


    January 2024
  86. WU Y, Xu Y, Sun J, Dai K, et al
    Inhibiting RIPK1-driven neuroinflammation and neuronal apoptosis mitigates brain injury following experimental subarachnoid hemorrhage.
    Exp Neurol. 2024;374:114705.
    PubMed     Abstract available


  87. LIU J, Qi L, Bao S, Yan F, et al
    The acute spinal cord injury microenvironment and its impact on the homing of mesenchymal stem cells.
    Exp Neurol. 2024 Jan 8:114682. doi: 10.1016/j.expneurol.2024.114682.
    PubMed     Abstract available


    December 2023
  88. MAH KM, Wu W, Al-Ali H, Sun Y, et al
    Corrigendum to "Compounds co-targeting kinases in axon regulatory pathways promote regeneration and behavioral recovery after spinal cord injury in mice" [Exp. Neurol. 355 (2022) 114117].
    Exp Neurol. 2023 Dec 26:114669. doi: 10.1016/j.expneurol.2023.114669.
    PubMed    


  89. BROWN BL, Anil N, States G, Whittemore SR, et al
    Long ascending propriospinal neurons are heterogenous and subject to spinal cord injury induced anatomic plasticity.
    Exp Neurol. 2023 Dec 7:114631. doi: 10.1016/j.expneurol.2023.114631.
    PubMed     Abstract available


    November 2023
  90. SEBLANI M, Ertlen C, Coyle T, Decherchi P, et al
    Combined effect of trifluoperazine and sodium cromoglycate on reducing acute edema and limiting lasting functional impairments after spinal cord injury in rats.
    Exp Neurol. 2023 Nov 20:114612. doi: 10.1016/j.expneurol.2023.114612.
    PubMed     Abstract available


    October 2023
  91. SUN C, Rahman MSU, Enkhjargal B, Peng J, et al
    Osteopontin modulates microglial activation states and attenuates inflammatory responses after subarachnoid hemorrhage in rats.
    Exp Neurol. 2023 Oct 24:114585. doi: 10.1016/j.expneurol.2023.114585.
    PubMed     Abstract available


  92. LEE JY, Park CS, Seo KJ, Kim IY, et al
    IL-6/JAK2/STAT3 axis mediates neuropathic pain by regulating astrocyte and microglia activation after spinal cord injury.
    Exp Neurol. 2023;370:114576.
    PubMed     Abstract available


  93. HUO J, Dong W, Xu J, Ma L, et al
    Role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in autophagy activation following subarachnoid hemorrhage.
    Exp Neurol. 2023 Oct 18:114577. doi: 10.1016/j.expneurol.2023.114577.
    PubMed     Abstract available


  94. YANG L, Gao X, Tian D, Yang W, et al
    Resolvin D2 activates anti-inflammatory microglia via restoring autophagy flux and alleviate neuropathic pain following spinal cord injury in rats.
    Exp Neurol. 2023 Oct 17:114573. doi: 10.1016/j.expneurol.2023.114573.
    PubMed     Abstract available


  95. SUN C, Deng J, Ma Y, Meng F, et al
    The dual role of microglia in neuropathic pain after spinal cord injury: Detrimental and protective effects.
    Exp Neurol. 2023 Oct 16:114570. doi: 10.1016/j.expneurol.2023.114570.
    PubMed     Abstract available


    September 2023
  96. METCALFE M, Steward O
    PTEN deletion in spinal pathways via retrograde transduction with AAV-RG enhances forelimb motor recovery after cervical spinal cord injury; Sex differences and late-onset pathophysiologies.
    Exp Neurol. 2023 Sep 29:114551. doi: 10.1016/j.expneurol.2023.114551.
    PubMed     Abstract available


  97. LIN X, Wang X, Zhang Y, Chu G, et al
    Synergistic effect of chemogenetic activation of corticospinal motoneurons and physical exercise in promoting functional recovery after spinal cord injury.
    Exp Neurol. 2023;370:114549.
    PubMed     Abstract available


    August 2023
  98. JIANG W, Zhang X, Yu S, Yan F, et al
    Decellularized extracellular matrix in the treatment of spinal cord injury.
    Exp Neurol. 2023 Aug 17:114506. doi: 10.1016/j.expneurol.2023.114506.
    PubMed     Abstract available


  99. ALONSO-CALVINO E, Fernandez-Lopez E, Zaforas M, Rosa JM, et al
    Increased excitability and reduced GABAergic levels in somatosensory cortex under chronic spinal cord injury.
    Exp Neurol. 2023 Aug 15:114504. doi: 10.1016/j.expneurol.2023.114504.
    PubMed     Abstract available


  100. STEWART AN, Kumari R, Bailey WM, Glaser EP, et al
    PTEN knockout using retrogradely transported AAVs transiently restores locomotor abilities in both acute and chronic spinal cord injury.
    Exp Neurol. 2023 Aug 7:114502. doi: 10.1016/j.expneurol.2023.114502.
    PubMed     Abstract available


    July 2023
  101. DANNER SM, Shepard CT, Hainline C, Shevtsova NA, et al
    Spinal control of locomotion before and after spinal cord injury.
    Exp Neurol. 2023 Jul 25:114496. doi: 10.1016/j.expneurol.2023.114496.
    PubMed     Abstract available


  102. LU E, Tang Y, Chen J, Al Mamun A, et al
    Stub1 ameliorates ER stress-induced neural cell apoptosis and promotes locomotor recovery through restoring autophagy flux after spinal cord injury.
    Exp Neurol. 2023 Jul 24:114495. doi: 10.1016/j.expneurol.2023.114495.
    PubMed     Abstract available


  103. SCHOLPA NE
    Role of DNA methylation during recovery from spinal cord injury with and without beta(2)-adrenergic receptor agonism.
    Exp Neurol. 2023 Jul 22:114494. doi: 10.1016/j.expneurol.2023.114494.
    PubMed     Abstract available


    June 2023
  104. AFSHARIPOUR B, Pearcey GEP, Rymer WZ, Sandhu MS, et al
    Acute intermittent hypoxia enhances strength, and modulates spatial distribution of muscle activation in persons with chronic incomplete spinal cord injury.
    Exp Neurol. 2023 Jun 2:114452. doi: 10.1016/j.expneurol.2023.114452.
    PubMed     Abstract available


    April 2023
  105. HE X, Guo X, Deng B, Kang J, et al
    Corrigendum to "HSPA1A ameliorated spinal cord injury in rats by inhibiting apoptosis to exert neuroprotective effects" [Experimental Neurology,Volume 361, March 2023, 114301].
    Exp Neurol. 2023 Apr 29:114419. doi: 10.1016/j.expneurol.2023.114419.
    PubMed    


  106. HUANG XX, Zhang QQ, Pang XX, Lin HB, et al
    Role of galectin-3 in cardiac dysfunction induced by subarachnoid hemorrhage.
    Exp Neurol. 2023 Apr 19:114418. doi: 10.1016/j.expneurol.2023.114418.
    PubMed     Abstract available


    March 2023
  107. LEE SE, Greenough EK, Fonken LK, Gaudet AD, et al
    Spinal cord injury in mice amplifies anxiety: A novel light-heat conflict test exposes increased salience of anxiety over heat.
    Exp Neurol. 2023 Mar 14:114382. doi: 10.1016/j.expneurol.2023.114382.
    PubMed     Abstract available


  108. THEO M, Aurelie B, Etienne G, Bertrand Sandrine S, et al
    Muscarinic cholinergic modulation of cardiovascular variables in spinal cord injured rats.
    Exp Neurol. 2023 Mar 4:114369. doi: 10.1016/j.expneurol.2023.114369.
    PubMed     Abstract available


    February 2023
  109. QUAN X, Yu C, Fan Z, Wu T, et al
    Hydralazine plays an immunomodulation role of pro-regeneration in a mouse model of spinal cord injury.
    Exp Neurol. 2023 Feb 27:114367. doi: 10.1016/j.expneurol.2023.114367.
    PubMed     Abstract available


  110. SZYMONIUK M, Mazurek M, Dryla A, Kamieniak P, et al
    The application of 3D-bioprinted scaffolds for neuronal regeneration after traumatic spinal cord injury - A systematic review of preclinical in vivo studies.
    Exp Neurol. 2023 Feb 27:114366. doi: 10.1016/j.expneurol.2023.114366.
    PubMed     Abstract available


Thank you for your interest in scientific medicine.


AMEDEO Neurosurgery is free of charge.